首页> 外文OA文献 >Brain-Structured Connectionist Networks That Perceive and Learn
【2h】

Brain-Structured Connectionist Networks That Perceive and Learn

机译:知觉和学习的大脑结构化联结主义网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper specifies the main features of Brain-like, Neuronal, and Connectionist models; argues for the need for, and usefulness of, structuring networks of neuron-like units into successively larger brain-like modules; and examines Recognition Cone models of perception from this perspective, as examples of such structures. Neuroanatomical, neurophysiological, and behavioral data on the structure, function, and development of the visual system are briefly summarized to motivate the architecture of brain-structured networks for perceptual recognition. The structural and functional architecture of Recognition Cones, the flow of information and the parallel-distributed nature of processing and control in Recognition Cones are described. The results from the simulation of carefully designed Recognition Cone structures that perceive objects (e.g., houses) in digitized photographs are presented. A framework for perceptual learning, including mechanisms for generation-discovery, that involves feedback-guided growth of new links between neuron-like units as needed, within a dynamically emerging network topology, subject to brain-like constraints on the network connectivity (e.g., local receptive fields, global convergence-divergence) is introduced. The information processing transforms discovered through generation are fine-tuned by feedback-guided reweighting of links. A case is made for the need for generation and discarding of transforms in addition to reweighting of links in Connectionist networks for perceptual learning. Some preliminary results from the simulation of brain-structured networks that learn to recognize simple objects (e.g., letters of the alphabet, cups, apples, bananas) through feedback-guided generation and reweighting of transforms are presented. Experimental comparisons indicate that such networks can give large improvements over networks that either lack brain-like structure or/and learn by reweighting of links alone. The role of brain-like structures and generation in perceptual learning is examined. Some directions for future research are outlined.
机译:本文指定了类脑模型,神经元模型和连接主义模型的主要特征;认为将神经元样单元的网络构造为依次更大的大脑样模块的必要性和实用性;并从这种角度研究了感知的认知锥模型,作为这种结构的示例。简要总结了有关视觉系统的结构,功能和发展的神经解剖学,神经生理学和行为数据,以激发用于感知识别的大脑结构网络的体系结构。描述了识别锥体的结构和功能架构,信息流以及识别锥体中处理和控制的并行分布性质。呈现了经过精心设计的识别锥结构的仿真结果,该结构可以感知数字化照片中的对象(例如房屋)。感性学习的框架,包括生成-发现的机制,涉及在动态新兴的网络拓扑结构内,根据需要在神经元样单元之间反馈引导下新链接的增长,该过程受网络连接性的类脑约束(例如,介绍了局部接受域,即全局收敛性。通过反馈引导的链接加权,可以微调通过生成发现的信息处理转换。除了重新连接连接网络中用于感知学习的链接的权重之外,还需要生成和丢弃转换。提出了一些模拟大脑结构的网络的初步结果,这些网络通过反馈引导的生成和变换的加权来学习识别简单的对象(例如,字母,杯子,苹果,香蕉)。实验比较表明,这样的网络可以比缺少大脑似结构或/和仅通过权重链接进行学习的网络进行重大改进。研究了大脑结构和生成在知觉学习中的作用。概述了未来研究的一些方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号